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Abstract
We describe a procedure for determining possible macroscopic symmetries
of a multidomain ferroic crystal. The domain structure is represented by
ferroic domain states and by their partial volumes which define its domain
configuration. If such a crystal is exposed to external field(s), all possible
domain states may no longer have equal free energy. Except for special cases,
all states with same free energy are equivalent under the maximal subgroup H of
the prototypic point group G that leaves the field(s) invariant; such states form
an H-orbit. Provided that the ferroic crystal contains all states from a single
H-orbit, and if these states occupy equal partial volumes, a coherent domain
configuration arises. Its averaged symmetry is given by the stabilizer of the H-
orbit, i.e. by the maximal subgroup of G transforming the H-orbit of states into
itself. Within the model used, the possible macroscopic symmetry of the crystal
is either the symmetry of a coherent domain configuration or an intersection of
some of these symmetries.

The procedure is demonstrated on rhombohedral perovskite crystals for
which all macroscopic symmetries and the external fields that produce coherent
configurations are given.

1. Introduction

In recent years, domain engineering has emerged as a new direction in materials research.
Interest in domain engineering has been stimulated by the discovery that rhombohedral
ferroelectric single crystals of relaxor-based Pb(Zn1/3Nb2/3)O3–PbTiO3 (PZN-PT) acquire
an extremely high value of both the piezoelectric coefficient d33 and the electromechanical
coupling k33 after being poled in an electric field along the [001] direction of the prototypic
cubic phase [1–4]. The resulting domain structure was found to have very low fatigue [5].
These properties make the engineered PZN-PT crystals a highly promising transducer material
in comparison to Pb(Zr, Ti)O3 ceramics, the current piezoelectric material of choice.

0953-8984/02/143795+18$30.00 © 2002 IOP Publishing Ltd Printed in the UK 3795

http://stacks.iop.org/cm/14/3795


3796 J Fuksa and V Janovec

A similar but less intense enhancement of electromechanical properties was observed in
perovskite BaTiO3 crystals [6] and in potassium niobate (KNbO3) crystals [7].

Besides the practical importance, such results also raise the question of the
possible macroscopic symmetries of engineered domain structures and their domain
configurations (DCs). In the case of the rhombohedral PZN-PT crystals it was assumed that in
an electric field along [001] four equivalent domain states are enhanced at the expense of the
others, giving rise to the macroscopic symmetry 4mm [8]. However, a more recent work has
suggested that the symmetry of these crystals can be orthorhombic mm2, or even lower [9,10].
In this connection, Erhart and Cao [11, 12] analysed an effective macroscopic symmetry
and physical properties of ferroelastic twins. Fousek et al [13] have deduced macroscopic
symmetries of rhombohedral PZN-PT crystals in which domain states occupy equal partial
volumes. For each symmetry the authors listed two DCs. Here we give a complete solution
for both equal and unequal partial volumes.

In this paper we present a general method for deriving all possible macroscopic symmetries
of the multidomain structures of a given ferroic phase. The necessary mathematical background
is briefly reviewed in section 2 (lemmas 1 and 2) and two main concepts are explained: an
orbit of domain states under a given point group and the class of equivalent divisions of the
set of all domain states into such orbits. Each orbit identifies a distinct free energy level
while each class specifies a possible symmetry. In section 3 we give a necessary condition
(condition 1) for a multidomain crystal to exhibit certain macroscopic symmetry, and a criterion
(condition 2) that the symmetry must fulfil. We introduce the concept of a coherent domain
configuration and suggest that any multidomain crystal satisfying condition 1 can be considered
as a ‘composition’ of coherent configurations. In section 4 it is shown that the only tetragonal
symmetry that the rhombohedral PZN-PT crystals can have is 4mm. The basic algorithm
for determining macroscopic symmetries of multidomain ferroic phases, together with the
procedure for deriving DCs for each symmetry, is described in section 5. In section 6 we
discuss external fields that can induce distinct coherent configurations.

2. Mathematical background

Multidomain crystals are characterized by the presence of distinct domain states. In the
following we shall neglect the disorientations of the ferroelastic domains. We shall work with
the ferroic single-domain states (orientational states [14]) resulting from the phase transition
G ↘ F, where G and F are the prototypic and the ferroic point group, respectively. Throughout
the paper, such states will be referred to merely as states.

An action of the group G on a set M of elements a, b, c, . . . is a mapping G × M �→ M

which to any operation g from G, g ∈ G, and to any element a from M , a ∈ M , assigns
an element b from M , b ∈ M; this is written briefly as g a = b. Such a mapping must
fulfil two additional conditions [15]: (i) e a = a for any a ∈ M and the identity e of G; and
(ii) (gh) a = g (h a) for all g, h ∈ G and any a ∈ M .

One defines the stabilizer StabG(a) of an element a ∈ M in the group G as the maximal
subgroup of G whose operations leave a fixed, i.e. g ∈ G belongs to StabG(a) if g a = a.
Similarly, one introduces the stabilizer StabH(a) of a in any subgroup H of G, H ⊆ G. One
can show that the stabilizer StabH(a) is an intersection H ∩ StabG(a) = StabH(a).

The concept of group action on a set will be used in two different instances. In one of
them, the elements of the set M are all possible states resulting from the phase transition
G ↘ F. The action of G on such a set is transitive (see e.g. [16]): for each two states there
is an operation g ∈ G taking one state into the other. The individual states will be numbered
as follows: select some state as a reference one and denote its symmetry by F1. Then one can
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establish a one-to-one correspondence between the states and the left cosets of F1 in G [14,17].
The group G is a disjoint union of all these left cosets [18], and so one can write

G = F1 + g2 F1 + · · · + gn F1, (1)

where the operation gi, i = 2, . . . , n, is called the representative of the ith coset. (For the
representative of the first coset we choose the identity, i.e. g1 F1 = e F1 = F1.) The index
n := [G : F1] of the subgroup F1 in G gives the number of all possible states; since the point
group G is finite, n equals |G|/|F1|, where |G| and |F1| are the numbers of the operations
lying in G and F1, respectively. Denoting by 〈1〉 the selected state of the symmetry F1, we put
〈2〉 = g2 〈1〉, . . . , 〈n〉 = gn 〈1〉.

The symmetry of the ith state, 〈i〉 = gi 〈1〉, is described by its stabilizer Fi := StabG(〈i〉)
that is conjugate to F1 in G, Fi = gi F1 g

−1
i . The intersection (2) of all the stabilizers F1, . . . , Fn

(which may but need not be pairwise distinct) is the maximal subgroup of G that leaves each
state fixed. It is denoted as [19]

core F := F1 ∩ F2 ∩ · · · ∩ Fn. (2)

If F1 is normal in G, i.e. gF1g
−1 = F1 for any g ∈ G, then core F = F1 = · · · = Fn. We

note that the group core F gives the minimal symmetry of a multidomain ferroic crystal whose
prototypic and ferroic symmetries are G and F, respectively. Other possible crystal symmetries
must be among supergroups H,K, . . . , of core F.

The central notion of the exposition below is the H-orbit of a state 〈i〉, where H is a
subgroup of G: it is defined as a set whose elements are generated by applying consecutively
all operations of H to the state 〈i〉. To obtain the H-orbit one can use the representatives of
distinct cosets in the decomposition of the group H with respect to the stabilizer of 〈i〉 in H,
StabH(〈i〉) = H ∩ StabG(〈i〉) = H ∩ Fi :

H = StabH(〈i〉) + h2StabH(〈i〉) + · · · + hqStabH(〈i〉), q = |H|/|StabH(〈i〉)|. (3)

The H-orbit consists of q states 〈i1〉 = 〈i〉, 〈i2〉 = h2〈i〉, . . . , 〈iq〉 = hq〈i〉. The group H acts
on the orbit transitively: the operation hkh

−1
l takes the state 〈il〉 into 〈ik〉. For such an orbit

we will use a composed symbol consisting of the group symbol and the number of some state
within the orbit, say 〈i1〉, separated by a star, i.e. H � i1. Such a symbol is not unique, since
H � i1 = H � il , l = 2, . . . , q. One can see that the set of all n states is the G-orbit of the state
〈1〉, i.e. {1, 2, . . . , n} := {〈1〉, 〈2〉, . . . , 〈n〉} = G � 1 = G � 2 = · · · = G � n.

Any two orbits H � i, H � j either coincide or have no state in common. The following
lemma holds [15]:

Lemma 1. Suppose that an action of the point group G is defined on a set M = {a, b, c, . . .}.
For any H ⊆ G the set M is either an H-orbit or a union of mutually disjoint H-orbits.

Any subgroup H of G thus gives a division of the orbit G � 1 = {1, . . . , n} into H-orbits
of states. In two cases such division yields a trivial result: either an H-orbit contains all the
states, i.e. H � 1 = G � 1, or each H-orbit consists of a single state, i.e. H ⊆ core F.

An H-orbit of states has a clear physical meaning: suppose a multidomain crystal is
exposed to an external macroscopic field whose symmetry group contains a subgroup H of
the prototypic group G. If H is a supergroup of core F, there exists an orbit H � i �= {〈i〉}.
Select from it another state h 〈i〉, h ∈ H. Being invariant under H, the applied field must have
the same effect on both the states, 〈i〉 and h 〈i〉. Therefore, their free energy in the field must
be equal. In general, every H-orbit of states represents a distinct level of free energy in any
macroscopic field for which the intersection of its symmetry group with G equals H.

In the other application of the group action, the elements of the set M are all orbits H � i,
where i = 1, . . . , n and core F ⊆ H ⊆ G. One can check that operations of G permute such
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orbits among themselves: an operation g ∈ G takes an orbit H � i1 into the Hg-orbit of the state
g 〈i1〉 consisting of q states g〈i1〉, . . . , g〈iq〉, where Hg = g H g−1 and H are conjugate in G.
Accordingly, the division of {1, . . . , n} into H-orbits is transformed by g into the division of
{1, . . . , n} into Hg-orbits. The stabilizer StabG(H � i1) of the orbit H � i1 in G contains all such
operations g ∈ G that permute the states of H � i1, thus leaving the orbit as a whole invariant.
One can see that the stabilizer of the Hg-orbit of g 〈i1〉 is g StabG(H � i1) g

−1—a subgroup of
G conjugate to StabG(H � i1). Note that StabG(H � i1) must contain H.

For arbitrary subgroups H1 and H2 of G, the divisions of the set {1, . . . , n} into H1- and
H2-orbits are called equivalent if some operation g ∈ G takes every orbit H1 � i into an orbit
H2 �j . The physical characteristics of two equivalent divisions are the same since the stabilizer
of an H1-orbit and the stabilizer of the corresponding H2-orbit are conjugate in G. If H1 and H2

themselves are conjugate, the divisions of {1, . . . , n} into H1- and H2-orbits must be equivalent.
Thus one gets the following lemma:

Lemma 2. There are at most as many non-equivalent divisions of the set of n states into group
orbits as there are distinct classes of conjugate subgroups in G containing the group core F.

As we will see, each division gives a possible macroscopic symmetry of the multidomain
ferroic crystal.

The exposition given above is illustrated on a PZN-PT crystal. To distinguish point
groups from the symmetry operations involved, we type respective symbols in different fonts.
For example, mz will denote the reflection in a plane perpendicular to the z-axis while the
monoclinic point group containing this reflection and the identity will be written, using the
international symbol, as mz, i.e. mz = {1,mz}. We use the following notation (in square
brackets on the right-hand side the direction of a rotation axis is given): 4z = 4[001], 4x = 4[100],
4y = 4[010], 3xyz = 3[111], 3xyz = 3[111], 3xyz = 3[111], 3xyz = 3[111], 2xy = 2[110], 2yz = 2[011],
2zx = 2[101], 2xy = 2[110], 2yz = 2[011] and 2zx = 2[101].

A PZN-PT crystal with the prototypic and the ferroic point group m3m and 3m,
respectively, has eight possible states that differ in polarization—a primary order parameter of
the phase transition m3m ↘ 3m. The polarizations of the states are parallel to the threefold
axes. By 〈1〉 we denote the state with the polarization vector oriented along [111]. Its stabilizer
F1 is 3xyzmxy, and so we rewrite (1) as follows:

m3m = 3xyzmxy + 2z 3xyzmxy + 2x 3xyzmxy + 2y 3xyzmxy

+ 1 3xyzmxy + mz 3xyzmxy + mx 3xyzmxy + my 3xyzmxy. (4)

To each state we assign the sequential number of the respective coset in the decomposition (4)
(see figure 1). The symmetry of the states is F1 = F5 = 3xyzmxy, F2 = F6 = 3xyzmxy,
F3 = F7 = 3xyzmxy, and F4 = F8 = 3xyzmxy. There are four non-ferroelastic pairs, {1, 5},
{2, 6}, {3, 7} and {4, 8}, in which both states have the same spontaneous deformation. The
polarizations in each pair are antiparallel: P (1) = −P (5) = (P, P, P ), −P (2) = P (6) =
(P, P,−P), −P (3) = P (7) = (−P,P, P ) and −P (4) = P (8) = (P,−P,P ), where P (i) is
the polarization of the ith state and P > 0.

To produce orbits of the states under a subgroup of m3m one can apply relevant operations
to the eight polarization vectors shown in figure 1. From the figure one directly reads that each
non-ferroelastic pair is an orbit of the triclinic group 1 = {1, 1}. Thus the set {1, . . . , 8} splits
into four 1-orbits, {1, 5} ∪ {2, 6} ∪ {3, 7} ∪ {4, 8}. Similarly, one checks that {1, 2}, {3, 4},
{5, 6} and {7, 8} are 2z-orbits which define another division of {1, . . . , 8}.

Inspecting figure 1 one can find the stabilizer of a given orbit of any subgroup of m3m.
One can see, for example, that the 1-orbits {1, 5}, {2, 6}, {3, 7} and {4, 8} are stabilized by
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Figure 1. Eight states of a ferroelectric rhombohedral PZN-PT crystal.

the trigonal groups 3xyz2xy/mxy, 3xyz2xy/mxy, 3xyz2xy/mxy and 3xyz2xy/mxy, respectively. The
stabilizers of all the 2z-orbits coincide with the orthorhombic group mxymxy2z.

3. Macroscopic symmetry of ferroic crystals. Coherent and incoherent domain
configurations

A multidomain crystal has an averaged macroscopic symmetry H if a matrix of any property
tensor U = (Uj1,j2,...) is invariant under the group H. The symmetry H of the crystal can
be observed due to a volume-averaging effect of macroscopic field(s) which is incorporated
into an overall response of the domain structure to these fields. We will assume that the
contribution of domain bulks to the crystal properties is dominant so that other contributions
can be neglected. Any effective property tensor U can be then written as a function of tensor
properties U (1), . . . ,U (n) of the states 〈1〉, . . . , 〈n〉, respectively, which are multiplied by the
respective partial volumes Vi/V , i = 1, . . . , n, i.e. U = U((V1/V )U (1), . . . , (Vn/V )U (n)),
where V is the crystal volume. For brevity, we write U = U((Vi/V )U (i)). The macroscopic
symmetry H implies that if the original coordinate system is transformed by an operation
h ∈ H into a new one, then tensor properties of the crystal must be the same in both the
systems so that U((Vi/V )U (i)) = U = U

′ = U((V ′
i /V )U ′(i)). The operation h will

not change any partial volume Vi/V (since it is a scalar), but instead of the property U (i)

of the state 〈i〉 one will get in the new coordinate system the property U (ki ) of the state
〈ki〉 = h−1 〈i〉. Consequently, U((Vi/V )U (i)) = U((Vi/V )U (ki )). After rearranging
the arguments we obtain that U((Vi/V )U (i)) = U((V1/V )U (k1), . . . , (Vn/V )U (kn)) =
U((Vl1/V )U (1), . . . , (Vln/V )U (n)) = U((Vli /V )U (i)), where 〈li〉 = h 〈i〉. This holds for
all h ∈ H, and so U((Vi/V )U (i)) = U((Vli /V )U (i)) = · · · = U((Vmi

/V )U (i)), where
all the states 〈i〉, 〈li〉, . . . , 〈mi〉 form an orbit H � i. If the stabilizer of the tensor property
U (1) of the state 〈1〉 equals F1, the tensor U will acquire distinct values U (1), . . . ,U (n) in all
n states. Therefore, no matter what the form of the function U = U((Vi/V )U (i)) is, the
partial volumes Vi/V, Vli /V , . . . , Vmi

/V must be equal. One gets a necessary condition for a
multidomain crystal to exhibit a macroscopic symmetry H:

Condition 1. All states within an arbitrary single orbit under H must have equal partial
volumes.

We note that this condition will be valid also if besides (Vi/V )U (i), i = 1, . . . , n, one
introduces other arguments to the function U = U((Vi/V )U (i)) in order to include further
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structural characteristics such as the presence of domain walls or an effective influence of
defects.

One can see that the basic information needed for analysing a macroscopic symmetry of
a multidomain crystal is the knowledge of all possible states and of their partial volumes that
give their relative weights (if some state is absent, its weight is zero). Owing to this, we shall
adopt a simple model in which a multidomain crystal is represented by its DC defined by the
domain states and their weights.

We shall examine a ferroic crystal consisting of a large number of domains. As we are
neglecting any structural defects and domain walls, we put V1 + · · ·+Vn = V . We approximate
the function U = U((Vi/V )U (i)) by a statistical average over the properties of the individual
states, U ≈ ∑n

i=1(Vi/V )U (i). If the crystal has the macroscopic symmetry H, then the
set of n states splits into p � 1 H-orbits, i.e. {1, . . . , n} = H � i1 ∪ · · · ∪ H � ip, where
H � ik = {〈ik〉 = 〈ik,1〉, . . . , 〈ik,rk 〉}, k = 1, . . . , p. The partial volumes Vk,l/V , l = 1, . . . , rk ,
of all states within the orbit H � ik must be equal, i.e. Vk,l/V = vk for all l. A DC of such
crystal can be specified by the p orbits H� ik and by the p-tuple [u1, . . . , up], where uk = rkvk
is the total partial volume occupied by the rk states within the kth orbit, and

∑p

k=1 uk = 1.
In general, there may exist two or more subgroups of G under which the set of n states

will split into same orbits. The same relationships among partial volumes of individual states
will then follow for each symmetry. This happens e.g. with the groups 2z and mxymxy2z: in
either case, the equalities V1 = V2, V3 = V4, V5 = V6 and V7 = V8 are obtained.

Such ambiguity stems from the fact that for any subgroup K of G the stabilizer StabG(K � il)

of a K-orbit K � il , l = 1, . . . , q, may be a supergroup of K. Therefore, another group K may
be contained in StabG(K � il) for all l such that each K-orbit will be a K-orbit, too. Take
e.g. K = 3xyz. Both 3xyz-orbits 3xyz � 1 = {1, 5} and 3xyz � 2 = {2, 3, 4, 6, 7, 8} are also
orbits of other two groups, K = 3xyz2xy and their stabilizer 3xyz2xy/mxy. Then V1 = V5 and
V2 = V3 = V4 = V6 = V7 = V8 for each symmetry.

The maximal subgroup of G whose orbits are K-orbits as well is the intersection of their
stabilizers. It will be called the closure Kc of K with respect to the action of G on the set of n
states:

Kc = StabG(K � i1) ∩ · · · ∩ StabG(K � iq) ⊇ K. (5)

The basic property of the closure operation (5) is that the closure of any K ⊆ G coincides with
the closure of itself, i.e. (Kc)c = Kc. Further, the closure of a conjugate Kg = g K g−1, g ∈ G,
to K is the conjugate of the closure Kc, (Kg)c = g Kcg−1 = (Kc)g . (Other useful properties are
stated in section 5.)

In the model adopted, a macroscopic symmetry H of a multidomain crystal is determined
solely by its DC: H is the maximal subgroup of G which admits existing equalities among the
partial volumes of individual states. Nevertheless, a possible symmetry H can be characterized
independently of the DC. According to the condition 1 a set of all states, whose non-zero
weights are equal, must be invariant under H. Since the set M0 containing the states with
a zero weight, and the union of all sets each consisting of states with the same weight, are
complementary in {1, . . . , n}, M0 is invariant under H, too. Owing to lemma 1, each set splits
into H-orbits in a unique way. The maximality of H implies that there is no supergroup H of H
for which every H-orbit will be also an H-orbit, i.e.

Condition 2. Any macroscopic symmetry H of a multidomain crystal is an intersection of the
stabilizers of all its orbits, i.e. H = Hc.

Every subgroup K of G fulfilling condition 2 will be called a principal symmetry of such a
crystal. In the examples discussed above, the closure 2 c

z = mxymxy2z and 3
c
xyz = (3xyz2xy)

c =
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3xyz2xy/mxy are principal symmetries of the PZN-PT crystals while 2z, 3xyz and 3xyz2xy are not.
In the approximation used, all principal symmetries exhaust possible macroscopic symmetries
of a multidomain crystal.

Condition 2 establishes a one-to-one correspondence between the principal symmetries
and the divisions of the set of all possible states into group orbits introduced in section 2:
as stated above, the intersection of stabilizers of all orbits contained in such division gives a
principal symmetry of the crystal. Conversely, each principal symmetry K = Kc determines a
division of the set of all states into K-orbits.

Condition 2 allows one to determine possible macroscopic symmetries of a multidomain
crystal without considering its DC. In order to find DCs with a given principal symmetry H it
is instructive to specify explicitly what the relationship is between the set of states, occupying
a non-zero volume, and the principal symmetry H. Suppose that in the crystal there are present
m states with q distinct weights, say v1, . . . , vq , q � m � n. One can divide the m states into
q sets M1, . . . ,Mq , where each Mj contains all states whose weight is vj . The group H must
leave any of these q sets invariant (cf condition 1), and so it must be contained in the stabilizer
StabG(Mj ) of each set Mj . Since the symmetry of the domain configuration is given by the
intersection of all these stabilizers, then

StabG(M1) ∩ · · · ∩ StabG(Mq) = H. (6)

Putting M = Mj and replacing G with StabG(Mj ) in lemma 1, one infers that Mj is either
an H-orbit, say H � ij,1, or it splits (uniquely) into several H-orbits, H � ij,1, . . . ,H � ij,sj .
In the former case StabG(Mj ) = StabG(H � ij,1) ⊇ H. In the latter case the intersection
Lj := ⋂sj

l=1 StabG(H�ij,l)of the sj stabilizers is the maximal subgroup of G that transforms each
orbit H�ij,l into itself. The group Lj leaves the set Mj invariant, and so StabG(Mj ) ⊇ Lj ⊇ H.
Using (6) one obtains that

q⋂
j=1

StabG(Mj ) := StabG(M1) ∩ · · · ∩ StabG(Mq) =
q⋂

j=1

Lj =
q⋂

j=1

sj⋂
l=1

StabG(H � ij,l) = H.

(7)

Since the stabilizer of every H-orbit contains H, equation (7) agrees with condition 2.
Condition 1 implies that if in a multidomain crystal exhibiting the symmetry H some state

is missing, then its whole H-orbit must be absent. And further, if any state of an H-orbit
is present, then all states of this orbit appear and must occupy equal partial volumes in the
crystal. In the simplest case only states belonging to a single H-orbit, say H�ik , will be involved.
The corresponding DC will be called coherent and will be denoted by 〈ik,1, . . . , ik,rk 〉, where
vk = 1/rk . Its symmetry H must equal the stabilizer of the kth H-orbit, StabG(H � ik) = H.

A coherent DC 〈il,1, . . . , il,rl 〉, 1 � l � p, is said to be trivial if the orbit H � il contains
either all n states or just one state 〈il〉. In the former case all the states have equal weights and
the crystal exhibits the prototypic symmetry G while the latter case represents a single-domain
crystal with the symmetry Fil .

In the first example given above there are four coherent DCs ς
(z)
k := 〈2k − 1, 2k〉,

k = 1, . . . , 4, of the symmetry mxymxy2z. Two of them are shown schematically in figure 2,
the other two are obtained through the reflection mz. Each ς(z)

k can be specified by the vectors
vkP

(2k−1) and vkP
(2k) (vk = 1

2 ) whose sum gives the effective polarization P (ς
(z)
k ). It is

represented by the dashed–dot line parallel to the z-axis.
In the other example one obtains two coherent DCs of the symmetry 3xyz2xy/mxy,

ϑ
(r)
1 = 〈1, 5〉 and ϑ

(r)
2 = 〈2, 3, 4, 6, 7, 8〉 (see figures 3(a), (b)). Similarly to in figure 2, each

DC is represented by the vectors that are parallel to the polarizations of the states involved
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2

1

(a)

8

7

(b)

Figure 2. Two coherent DCs of the symmetry H = mxymxy2z: (a) ς(z)1 = 〈1, 2〉; (b) ς(z)4 = 〈7, 8〉.

5

1

(a)

7
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3 6

2
8

(b)

1

5

2 7

8

3 6

4

(c)

Figure 3. Coherent DCs of the symmetry H = 3xyz2xy/mxy and a mixed one: (a) ϑ(r)
1 = 〈1, 5〉;

(b) ϑ(r)
2 = 〈2, 3, 4, 6, 7, 8〉; (c) 1

3ϑ
(r)
1 � 2

3ϑ
(r)
2 (scale 3 : 1).

and whose length is proportional to the corresponding partial volume (for all coherent DCs the
same scale is used).

A multidomain crystal exhibiting a macroscopic symmetry H may contain several H-orbits
of states. The DCD{u} of such a crystal can be looked at as a formal composition of the coherent
DCs each corresponding to a distinct H-orbit:

D{u} = u1〈i1,1, . . . , i1,r1〉 � · · · � up〈ip,1, . . . , ip,rp 〉, (8)

where ‘�’ means ‘coexists with’, and the partial volumes u1, . . . , up, yield the weights of
distinct coherent configurations. According to (7), the symmetry of the DC D{u} is the
intersection of the stabilizers StabG(H � il) of all those orbits H � il for which ul �= 0:

p⋂
l=1
ul �=0

StabG(H � il) = H. (9)

Therefore, any macroscopic symmetry of a multidomain crystal is either the symmetry of a
coherent DC or an intersection of several such symmetries. We note that for a given symmetry H
there may exist several DCs that differ in a set of the zero weights. If at least two weights do not
vanish, two cases can be recognized: either the crystal involves a coherent DC 〈ik0,1, . . . , ik0,rk0

〉
such that H = StabG(H � ik0), or not.
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Table 1. Macroscopic symmetries of the rhombohedral PZN-PT crystals.

DC Macroscopic symmetry {no of states}
Coherenta m3m{8∗}, 43m{4}, 32/m{2, 6}, mxymxymz{4}, 4mm{4}, 3m{1∗, 3},

mxymxy2z{2}, 2xymxymz{2}
Incoherentb 2xy/mxy{4, 6}, 2xy{4},mxy{2, 3},mz{4}, 1{6}, 1{3}
a The trivial coherent configurations.
b Number of states given for the minimal incoherent configurations.

In the former case, D{u} will be called a mixed configuration. It may contain, in addition
to the coherent DC 〈ik0,1, . . . , ik0,rk0

〉, any of the remaining p − 1 coherent configurations.
It is almost obvious that for every non-trivial coherent DC there exists a mixed DC of the
same symmetry, and vice versa. A simple example of a mixed DC consisting of two coherent
DCs of the symmetry 3xyz2xy/mxy is shown in figure 3(c). Less trivial is a mixed DC of
the symmetry mxy2xymz, u1%

(xy)

1 � u2µ
(z)
1 := u1〈3, 8〉 � u2〈1, 2, 5, 6〉, where the symmetry

Stabm3m(mxy2xymz � 1) of µ(z)
1 is mxymxymz ⊃ mxy2xymz (cf table 2).

In the latter case, D{u} will be referred to as an incoherent configuration. Its symmetry
is always lower than the symmetry of any coherent DC included. An incoherent DC of the
symmetry H is minimal if after any of the q � p coherent DCs involved is omitted, the new
DC thus obtained has a higher symmetry H′ ⊃ H. Unless minimal itself, any incoherent DC
can be reduced, by expelling of one or more coherent DCs, to a minimal configuration with
the same symmetry. Such a reduction need not be unique.

The stabilizers of all 1-orbits (cf section 2) imply that for the principal symmetry 1 there
exist only incoherent DCs which involve either any three or all four coherent DCs of a trigonal
symmetry 32/m. Among them only the incoherent configuration containing all eight states is
not minimal. Another example of an incoherent DC provides a multidomain PZN-PT crystal
in which the states 〈1〉, 〈5〉 and 〈6〉 occupy equal volumes. This DC which is composed of
three trivial coherent DCs, 1

3'
(r)
1 � 1

3'
(r)
2 � 1

3'
(z)
2 , is minimal and has the symmetry mxy as

can be seen in table 3.
We note that as a consequence of lemma 1, any p-tuple [u1, . . . , up] of the weights of

the p coherent DCs, which specifies a DC of the symmetry H, must be such that condition 1
will not be satisfied for any supergroup K of H: the most general DC of the symmetry 2xy is
D{u} = u1〈1, 5〉 � u2〈2, 6〉 � u3〈3, 8〉 � u4〈4, 7〉 (cf table 3). Using tables 2 and 3 one can
check that for u1 = u2 the symmetry of D{u} would be mxy2xymz, while for u3 = u4 one would
observe the symmetry 2xy/mxy. Accordingly, it must be u1 �= u2 and u3 �= u4.

4. Tetragonal symmetry and corresponding domain configurations in rhombohedral
PZN-PT single crystals

To find which tetragonal symmetries fulfil condition 2 one has to determine all orbits of the
relevant groups. Lemma 1 facilitates this task: realizing that any tetragonal group K must
contain either the cyclic group 4 or 4, every K-orbit of states is, in general, a union of some
4-orbits of states or of some of the 4-orbits. Since the orientations of three fourfold axes are
equivalent under m3m, one needs to consider only the [001] direction. One deduces the 4z-
and 4z-orbits from figure 1. Every orbit of any of the tetragonal groups must be among the
4z-orbits {1, 2, 7, 8} and {3, 4, 5, 6}, the 4z-orbits {1, 2, 3, 4} and {5, 6, 7, 8} and the m3m-
orbit {1, 2, 3, 4, 5, 6, 7, 8}. The stabilizer of both 4z-orbits is 43m since each threefold rotation
leaves either orbit invariant. Therefore, no principal tetragonal symmetry will contain a ro-
toinversion 4. One is left with three possibilities: 4z, 4zmm and 4z22. As one checks, any
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Table 2. Coherent DCs and corresponding driving forces. (T —mechanical stress tensor, E—
intensity of electric field.)

Macroscopic Coherent domain Driving
symmetry configuration forces

m3m κ = 〈1, 2, 3, 4, 5, 6, 7, 8〉
43m λ1 = 〈1, 2, 3, 4〉, λ2 = 〈5, 6, 7, 8〉 κ : T12E3

a

3xyz2xy/mxy ϑ
(r)
1 = 〈1, 5〉, ϑ(r)

2 = 〈2, 3, 4, 6, 7, 8〉 κ : T23 = T31 = T12

3xyz2xy/mxy ϑ
(x)
1 = 〈3, 7〉, ϑ(x)

2 = 〈1, 2, 4, 5, 6, 8〉 κ : T23 = −T31 = −T12

3xyz2xy/mxy ϑ
(y)

1 = 〈4, 8〉, ϑ(y)

2 = 〈1, 2, 3, 5, 6, 7〉 κ : −T23 = T31 = −T12

3xyz2xy/mxy ϑ
(z)
1 = 〈2, 6〉, ϑ(z)

2 = 〈1, 3, 4, 5, 7, 8〉 κ : −T23 = −T31 = T12

4xmm ϕ
(x)
1 = 〈1, 3, 6, 8〉, ϕ(x)2 = 〈2, 4, 5, 7〉 κ : E ‖ [100]

4ymm ϕ
(y)

1 = 〈1, 4, 6, 7〉, ϕ(y)2 = 〈2, 3, 5, 8〉 κ : E ‖ [010]

4zmm ϕ
(z)
1 = 〈1, 2, 7, 8〉, ϕ(z)2 = 〈3, 4, 5, 6〉 κ : E ‖ [001]

mxmyzmyz µ
(x)
1 = 〈1, 3, 5, 7〉, µ(x)

2 = 〈2, 4, 6, 8〉 κ : T23

mzxmymzx µ
(y)

1 = 〈1, 4, 5, 8〉, µ(y)

2 = 〈2, 3, 6, 7〉 κ : T31

mxymxymz µ
(z)
1 = 〈1, 2, 5, 6〉, µ(z)

2 = 〈3, 4, 7, 8〉 κ : T12

3xyzmxy
'

(r)
1 = 〈1〉, ' (r)

2 = 〈5〉
ν
(r)
1 = 〈2, 3, 4〉, ν(r)2 = 〈6, 7, 8〉

ϑ
(r)
1 :

ϑ
(r)
2 :

{
E ‖ [111],
T23 = T31 = T12

3xyzmxy
'

(x)
1 = 〈3〉, ' (x)

2 = 〈7〉
ν
(x)
1 = 〈1, 2, 4〉, ν(x)2 = 〈5, 6, 8〉

ϑ
(x)
1 :

ϑ
(x)
2 :

{
E ‖ [111],
T23 = −T31 = −T12

3xyzmxy
'

(y)

1 = 〈4〉, ' (y)

2 = 〈8〉
ν
(y)

1 = 〈1, 2, 3〉, ν(y)2 = 〈5, 6, 7〉
ϑ
(y)

1 :

ϑ
(y)

2 :

{
E ‖ [111],
−T23 = T31 = −T12

3xyzmxy
'

(z)
1 = 〈2〉, ' (z)

2 = 〈6〉
ν
(z)
1 = 〈1, 3, 4〉, ν(z)2 = 〈5, 7, 8〉

ϑ
(z)
1 :

ϑ
(z)
2 :

{
E ‖ [111],
−T23 = −T31 = T12

2xmyzmyz
ς
(x)
1 = 〈1, 3〉, ς(x)2 = 〈2, 4〉,
ς
(x)
3 = 〈5, 7〉, ς(x)4 = 〈6, 8〉 ϕ

(x)
k , µ

(x)
k : E ‖ [100], T23

mzx2ymzx
ς
(y)

1 = 〈1, 4〉, ς(y)2 = 〈2, 3〉,
ς
(y)

3 = 〈5, 8〉, ς(y)4 = 〈6, 7〉 ϕ
(y)

k , µ
(y)

k : E ‖ [010], T31

mxymxy2z
ς
(z)
1 = 〈1, 2〉, ς(z)2 = 〈3, 4〉,
ς
(z)
3 = 〈5, 6〉, ς(z)4 = 〈7, 8〉 ϕ

(z)
k , µ

(z)
k : E ‖ [001], T12

mx2yzmyz %
(yz)

1 = 〈1, 7〉, %(yz)2 = 〈3, 5〉 µ
(x)
1 : E ‖ [011], T23

mxmyz2yz %
(yz)

1 = 〈4, 6〉, %(yz)2 = 〈2, 8〉 µ
(x)
2 : E ‖ [011], −T23

mzxmy2zx %
(zx)
1 = 〈1, 8〉, %(zx)2 = 〈4, 5〉 µ

(y)

1 : E ‖ [101], T31

2zxmymzx %
(zx)
1 = 〈2, 7〉, %(zx)2 = 〈3, 6〉 µ

(y)

2 : E ‖ [101], −T31

2xymxymz %
(xy)

1 = 〈1, 6〉, %(xy)2 = 〈2, 5〉 µ
(z)
1 : E ‖ [110], T12

mxy2xymz %
(xy)

1 = 〈3, 8〉, %(xy)2 = 〈4, 7〉 µ
(z)
2 : E ‖ [110], −T12

a Provided that T12 = T0 and E3 = E0 are given by the material properties, and T 2
0 = f (E2

0 ).

2x2y2z-orbit coincides with some 43m-orbit, and each mxmy2z-orbit is a 4z-orbit as well. One
directly gets that 4 c

z = 4zmm. Further, 4z22 � 1 ⊇ 4z � 1 ∪ 2x2y2z � 1 ⊇ {3, 7} implies that
4z22 � 1 = 4z � 1 ∪ 4z � 5 = {1, . . . , 8}, i.e. (4z22)c = m3m. One concludes that 4mm is the
only tetragonal symmetry that one can engineer in a PZN-PT crystal. For each orientation of
a fourfold axis, [100], [010] and [001], there are two coherent DCs and their mixture:

(c1) ϕ
(x)
1 := 〈1, 3, 6, 8〉 ϕ

(y)

1 := 〈1, 4, 6, 7〉 ϕ
(z)
1 := 〈1, 2, 7, 8〉

(c2) ϕ
(x)
2 := 〈2, 4, 5, 7〉 ϕ

(y)

2 := 〈2, 3, 5, 8〉 ϕ
(z)
2 := 〈3, 4, 5, 6〉

(m) u1 ϕ
(x)
1 � u2 ϕ

(x)
2 u1 ϕ

(y)

1 � u2 ϕ
(y)

2 u1 ϕ
(z)
1 � u2 ϕ

(z)
2 , u1, u2 �= 1

2 .
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Table 3. Minimal incoherent DCs with non-trivial macroscopic symmetry. Examples of driving forces. (T —mechanical stress, E—intensity of electric
field, e(1) (e = e

(1)
23 = e

(1)
31 = e

(1)
12 )—spontaneous deformation of the state 〈1〉, P (1) (P = P

(1)
1 = P

(1)
2 = P

(1)
3 )—spontaneous polarization of 〈1〉,

ε(1) (ε = ε
(1)
23 = ε

(1)
31 = ε

(1)
12 )—permittivity of 〈1〉.)

Macroscopic Coherent domain Minimal incoherent Driving
symmetry configurations involved DCs forces

2xy/mxy ϑ
(r)
1 = 〈1, 5〉, ϑ(z)

1 = 〈2, 6〉, µ(z)
2 = 〈3, 4, 7, 8〉 u1ϑ

(r)
1 � u2ϑ

(z)
1 , u1 �= u2

v1ϑ
(a)
1 � v2µ

(z)
2 , v2 �= 2v1

2xy/mxy : T23 = T31 �= T12

µ
(z)
1 : ±T23 , 0< |eT23|< 1

5 eT12;

2xy/mxy ϑ
(x)
1 = 〈3, 7〉, ϑ(y)

1 = 〈4, 8〉, µ(z)
1 = 〈1, 2, 5, 6〉 u1ϑ

(x)
1 � u2ϑ

(y)

1 , u1 �= u2

v1ϑ
(b)
1 � v2µ

(z)
1 , v2 �= 2v1

ϑ
(z)
2 : +T23

ϑ
(r)
2 : −T23

}
3eT12<−|eT23|< 1

2 eT12,

−|eT23| �= eT12<0

2xy ϑ
(r)
1 = 〈1, 5〉, ϑ(z)

1 = 〈2, 6〉, %(xy)1 = 〈3, 8〉, %(xy)2 = 〈4, 7〉 w1ϑ
(a)
1 � w2%

(xy)

i
2xy : T23 = T31 �= T12, E = E1 = −E2

2xy ϑ
(x)
1 = 〈3, 7〉, ϑ(y)

1 = 〈4, 8〉, %(xy)1 = 〈1, 6〉, %(xy)2 = 〈2, 5〉 w1ϑ
(b)
1 � w2%

(xy)

i
w1ϑ

(r)
1 � w2%

(xy)

1︸ ︷︷ ︸
mz %

(xy)

1 = 〈1, 6〉, %(xy)2 = 〈2, 5〉, %(xy)1 = 〈3, 8〉, %(xy)2 = 〈4, 7〉 u1%
(xy)

i � u2%
(xy)

j , u1 �= u2 1. 2xy/mxy − v1ϑ
(r)
1 � v2µ

(z)
2 , v2 �= 2v1 :

1 ϑ
(r)
1 = 〈1, 5〉, ϑ(z)

1 = 〈2, 6〉, ϑ(x)
1 = 〈3, 7〉, ϑ(y)

1 = 〈4, 8〉 t1ϑ
(a)
1 � t2ϑ

(b)
1 � t3ϑ

(c)
1 ,

t1 �= t2 �= t3 �= t1

W = 2eT23 + 2eT12 − εE2 > 0,

(a)EP �= 2W, W <EP <6W, W �eT23

mxy
'

(r)
1 = 〈1〉, ' (r)

2 = 〈5〉, ' (z)
1 = 〈2〉, ' (z)

2 = 〈6〉,
ς
(z)
2 = 〈3, 4〉, ς(z)4 = 〈7, 8〉

u1'
(r)
i � u2'

(z)
j , u1 �= u2

v1'
(a)
k � v2ς

(z)
2k , v2 �= 2v1

w1'
(a)
k � w2ς

(z)
6−2k

1
3'

(r)
i � 1

3'
(z)
i � 1

3'
(a)
k

(b)EP = 2W, 1
2W<eT23<

3
4W

2. mxy2xymz − v1µ
(z)
1 � v2%

(xy)

1 :

Z = 1
2EP − 2eT12 + εE2 > 0,

(a) eT23 �= 1
2Z,

1
4Z<eT23<

3
2Z, 4Z�EP

mxy
'

(x)
1 = 〈3〉, ' (x)

2 = 〈7〉, ' (y)

1 = 〈4〉, ' (y)

2 = 〈8〉,
ς
(z)
1 = 〈1, 2〉, ς(z)3 = 〈5, 6〉

u1'
(x)
i � u2'

(y)

j , u1 �= u2

v1'
(b)
k � v2ς

(z)
2k−1, v2 �= 2v1

w1'
(b)
k � w2ς

(z)
6−2k−1

1
3'

(x)
i � 1

3'
(y)

i � 1
3'

(b)
k

(b) eT23 = 1
2Z, 2Z<EP <3Z

3. 2xy/mxy or mxy2xymz (w1, w2—any),

m3m − κ (w1 = w2 = 1
2 ) :

W = 2eT23 = 1
2EP = Z
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Figure 4. Coherent DCs of the symmetry H = 4zmm and a mixed one: (a) ϕ(z)1 = 〈1, 2, 7, 8〉;
(b) ϕ(z)2 = 〈3, 4, 5, 6〉; (c) 2

3ϕ
(z)
1 � 2

3ϕ
(z)
2 (scale 3 : 1).

Due to the symmetry 4mm, the effective polarization of the PZN-PT crystal is parallel to
the fourfold axis. One can see that the effective polarization P (ϕ

(z)
1 ) will be oriented up while

the polarization P (ϕ
(z)
2 ) will be oriented down (cf figures 4(a), (b) in which the scale used is

the same as that for other coherent DCs). For a mixed DC u1 ϕ
(z)
1 � u2 ϕ

(z)
2 (figure 4(c)) one

obtains the average polarization P = (0, 0, (u1 − u2)P ). Applying a dc bias field along the
fourfold axis one can change the values of u1 and u2 so that for high enough field only one
coherent DC survives. Note that for u1 = u2 = 1

2 a coherent DC of the symmetry m3m results.

5. Determination of possible macroscopic symmetries and of all corresponding DCs of a
multidomain crystal

In the preceding section possible tetragonal symmetries and the corresponding DCs of a
rhombohedral PZN-PT crystal were found. In order to derive all principal symmetries of
the crystal one should proceed in a systematic way. With that aim, we use the one-to-one
correspondence between the principal symmetries of such a multidomain crystal and the
divisions of the set of all possible states into orbits under H that runs over all subgroups
of the prototypic group G (cf section 3). Since every class of equivalent divisions corresponds
to at least one class of conjugate subgroups of G (cf lemma 2), one needs to examine one group
per class. Moreover, only the supergroups of core F, that gives the minimal symmetry, are to
be considered. The algorithm for deriving the principal symmetries is straightforward.

From each class of conjugate subgroups of G, containing the group core F, select a
representative group Hj . For each Hj determine all Hj -orbits of states consecutively: by
applying all the operations of Hj to the state 〈1〉, generate the orbit Hj � i1 := Hj � 1. If it
contains less than n states, another Hj -orbit must exist. Choose a state 〈i2〉 from the remaining
states and generate the orbit Hj � i2. If both the orbits contain less than n states continue in
generating further Hj -orbits until no more states are left. For each orbit Hj � ik , k = 1, . . . , qj ,
find its stabilizer StabG(Hj � ik) among the supergroups of Hj . If StabG(Hj � ik) = Hj for
some k, then Hj = H c

j gives a possible macroscopic symmetry of the crystal. Otherwise, such

symmetry equals the intersection
⋂qj

k=1 StabG(Hj � ik) = H c
j . Note that if a representative Hk

is conjugate to the closure H c
j in G, i.e. Hk = gjk H c

j g
−1
jk (or even Hk = H c

j ), it need not be
dealt with since H c

k = Hk . At the end, all principal symmetries are obtained as the closures of
certain representatives Hj1 , . . . ,Hjm , i.e. as H c

j1
, . . . ,H c

jm
.
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One should handle the representatives Hj in the following order: first take cyclic groups,
and then all the others. In either case, the groups should be processed with the higher precedence
given to the lower order of Hj , so that lemma 1 can be used. Consider e.g. the groups 4z2xmxy

and 4zmx2xy which in addition to the cyclic group 4z contain also the group 2x2y2z and mxmy2z,
respectively. According to section 4, 4z � i = 2x2y2z � i = 43m� i and mxmy2z � i = 4zmm� i,
i = 1, 5. It follows that (4z2xmxy)

c = 43m while 4zmx2xy � 1 = 43m � 1 ∪ 43m � 5 =
4zmm � 1 ∪ 4zmm � 5 = {1, . . . , 8}, i.e. (4zmx2xy)

c = m3m.
Two following lemmas and the closure properties (to be given below) can speed up the

calculations:

Lemma 3. Consider a subgroup H of the prototypic group G. If an H-orbit contains all n
states, i.e. G � 1 = H � 1, then for all groups K, H ⊂ K ⊂ G, and for all operations g ∈ G,
it holds that Hg � 1 = K � 1 = Kg � 1 = {1, . . . , n}, where Hg = g H g−1 is a subgroup of G
conjugate to H.

Accordingly, from 4zmx2xy �1 = {1, . . . , 8} one obtains that 4xmy2yz �1 = 4ymz2zx �1 =
4z/mmm � 1 = 4x/mmm � 1 = 4y/mmm � 1 = {1, . . . , 8}, i.e. (4m2) c = (4/mmm) c = m3m.

Lemma 4. Suppose that H is a normal subgroup in G, i.e. Hg = H for all g ∈ G. Then all
H-orbits of states form a single G-orbit. Take one of them, say H � i1. Decomposing the group
G into the left cosets of the stabilizer StabG(H � i1), G = StabG(H � i1) + g′ StabG(H � i1) +
g′′ StabG(H � i1) + · · ·, one obtains the other H-orbits by applying the coset representatives
g′, g′′, . . . , to H � i1. Furthermore, the stabilizer of H � i1 contains the stabilizer of the state
〈i1〉, i.e. StabG(H � i1) ⊇ Fi1 . There are exactly [G : StabG(H � i1)] = |G|/|StabG(H � i1)|
H-orbits, each containing |StabG(H � i1)|/|Fi1 | states. If the operations of both groups H and
Fi1 generate the whole group G, then H � i1 = G � i1 = {1, . . . , n}.

As shown in section 2, under the normal subgroup 1 of m3m the set {1, . . . , 8} splits into
[m3m : Stabm3m(1�1)] = |m3m|/|3xyz2xy/mxy| = 4 orbits, each consisting of 12/6 = 2 states.

The closure operation (5) has the following properties: for any subgroups H1,H2 of G it
holds that

(Hc
1)

c = Hc
1 ⊇ H1 (10a)

(H1 ∪ H2)
c ⊇ Hc

1 ∪ Hc
2 (10b)

(H1 ∩ H2)
c ⊆ Hc

1 ∩ Hc
2 (10c)

H1 ⊇ H2 �⇒ Hc
1 ⊇ Hc

2 ∪ H1 (10d)

Hc
1 ⊇ H2 �⇒ Hc

1 ⊇ Hc
2 (10e)

H1 ⊇ Hc
2 �⇒ Hc

1 ⊇ Hc
2. (10f)

The relations (10d)–(10f ) are special consequences of the primary relations (10a)–(10c).
We show how these properties can be used. The relation (10b) yields that (m3)c =
(3 ∪ 2z)

c ⊇ 3
c ∪ 2 c

z = 32/m ∪ mxymxy2z = m3m. By (10d) one obtains that (2z/mz)
c ⊇

2 c
z ∪ 2z/mz = mxymxymz. Therefore, the symmetries m3 and 2z/mz are not principal. The

relations (10e), (10f ) give an upper or lower bound for the relevant closure: e.g. (32xy/mxy)
c =

32xy/mxy ⊇ (2xy/mxy)
c by (10e) while (4z2xmxy)

c ⊇ (2x2y2z)
c = 43m by (10f ). One can also

check that 4
c
z = 43m: first, 4

c
z = (4zmx2xy ∩ 4z2xmxy)

c ⊆ m3m ∩ 43m = 43m by (10c), and
second, 4

c
z ⊇ 2 c

z ∪4z = 4z2xmxy by (10d). Finally, (10e) implies that 4
c
z ⊇ (4z2xmxy)

c = 43m.
Applying lemma 4 one finds that each of four normal subgroups of the prototypic group

m3m, mxmymz, 23, m3 and 432, generates together with the stabilizer 3xyzmxy of the state 〈1〉
the whole m3m. The closure of the other normal subgroups of m3m, 1, 2x2y2z and 43m, yields
two principal symmetries, 1 = 1

c
and 43m = (2x2y2z)

c. Note that the supergroups of 2x2y2z,
4z22 and 4z/mmm, can be ruled out by (10d).
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We note that the definition of the closure operation (5) has a useful consequence:

Lemma 5. The closure of a maximal subgroup K of the prototypic point group G is either the
whole G, Kc = G, or the group itself, Kc = K. In the latter case, K is a principal symmetry
of the multidomain crystal, and the stabilizers of all K-orbits are equal to K. A DC of such
symmetry is either coherent or mixed but not incoherent.

As already seen, only two maximal subgroups of m3m, 32/m and 43m, are principal
symmetries of the PZN-PT crystals while 4/mmm, m3 and 432 are not.

Using the suggested hints one derives all possible macroscopic symmetries of multidomain
ferroelectric rhombohedral perovskite crystals with a relative ease. The results are given in
table 1.

During the derivation, for each principal symmetry Kl = H c
jl

, l ∈ {1, . . . , m}, one must
have found all its orbits Kl � ik , k = 1, . . . , pl , and their stabilizers StabG(Kl � ik). Such
information enables one to obtain all DCs with a principal symmetry Kl : a simple check of
StabG(Kl � ik) = Kl will yield all coherent configurations of the symmetry Kl (if any). Adding
to each of them, consecutively one after another, coherent DCs each corresponding to some
Kl-orbit, one generates all the mixed configurations having the symmetry Kl .

It may happen that StabG(Kl′ � ik) �= Kl′ k = 1, . . . , pl′ , for some principal symmetry
Kl′ . Then any DC of that symmetry will be incoherent. Nevertheless, in a few cases their
exist principal symmetries for which both coherent and incoherent DCs exist. An incoherent
configuration of the symmetry Kl will appear if two conditions are satisfied:

(1) There are at least two orbits Kl � ik1 , . . . ,Kl � ikt , t � 2, whose stabilizers differ from Kl ,
i.e. StabG(Kl � ik1) �= · · · �= StabG(Kl � ikt ) �= Kl .

(2) The intersection of the t stabilizers equals Kl , i.e. StabG(Kl �ik1)∩· · ·∩StabG(Kl �ikt ) = Kl .

Any incoherent configuration of the symmetry Kl can be generated from the minimal
incoherent DCs of the same symmetry quite analogously to how mixed DCs are obtained from
the coherent ones.

All minimal incoherent configurations with the symmetry Kl can be determined step by
step. First, from among the orbits Kl � ik , k = 1, . . . , pl , discard all orbits whose stabilizer
equals Kl . The remaining ones specify each a coherent DC with the principal symmetry higher
than Kl . Denote all these (mutually distinct) symmetries by K̃1, . . . , K̃q, . . . , K̃s . Second, find
all minimal subsets of the set {K̃1, . . . , K̃s} such that the intersection of the groups involved
will equal Kl , i.e. if any of the groups within a minimal subset is omitted, then the intersection
of the remaining ones will differ from Kl . Then, with each minimal subset, say {K̃q1 , . . . , K̃qr },
r � s, proceed as follows: for each K̃qj , j = 1, . . . , r , select just one of those Kl-orbits whose
stabilizer is K̃qj . A composition (8) of the corresponding r coherent configurations is a minimal
incoherent configuration provided that the respective r weights do not satisfy condition 1 for
any supergroup of Kl . Exhausting all combinations of r coherent DCs with the symmetries
K̃q1 , . . . , K̃qr , one produces all those minimal incoherent configurations in which each coherent
DC has a distinct symmetry K̃qj . Last, determine all the other minimal incoherent ones (if any)
that contain two or more coherent DCs with same symmetry. This is a bit more sophisticated,
since every relevant composition of the coherent DCs whose symmetry is one of K̃1, . . . , K̃s has
to be checked separately. In general, if a minimal incoherent DC contains at least two coherent
DCs of the symmetry K̃q , q ∈ {1, . . . , s}, then after any of them is omitted, one must be able to
rewrite a newly formed DC as a composition of coherent DCs corresponding to certain orbits
of a principal symmetry Kl′ ⊃ Kl ; otherwise the original configuration would not be minimal.
Consequently, among the weights of the coherent DCs involved, special relationships should
hold, as for the minimal incoherent DC of the symmetry mxy, 1

3'
(r)
1 � 1

3'
(r)
2 � 1

3'
(z)
2 .
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Figure 5. Coherent DCs of the symmetry H = 43m: (a) λ1 = 〈1, 2, 3, 4〉; (b) λ2 = 〈5, 6, 7, 8〉.
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Figure 6. Coherent DCs of the symmetry H = mxymxymz: (a) µ(z)
1 = 〈1, 2, 5, 6〉; (b) µ(z)

2 =
〈3, 4, 7, 8〉.
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Figure 7. Minimal incoherent DCs of the symmetry H = 2xy/mxy (a, b) and H = 2xy (c):
(a) 2

3 〈1, 5〉 � 1
3 〈2, 6〉; (b) 1

2 〈2, 6〉 � 1
2 〈3, 4, 7, 8〉; (c) 2

3 〈1, 5〉 � 1
3 〈3, 8〉 (scale: ((a), (c)) 3 : 2; (b)

2 : 1).

In table 2 we list all the coherent DCs for the PZN-PT crystals with G = m3m and F = 3m.
In figures 5 and 6 we represent coherent DCs of the symmetry 43m, and mxymxymz, respectively.
(We use the same scale for all coherent DCs—cf figures 4(a), (b).) Table 3 brings together all
minimal incoherent configurations for non-equivalent non-trivial principal symmetries; some
of these DCs are shown in figures 7 and 8. The superscripts a, b and c in table 3 acquire in the
corresponding order two values: r or z, x or y and y or z.

The procedure for finding all DCs with a principal symmetry K = Kc illustrates that
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Figure 8. Minimal incoherent DCs of the symmetry H = mz (a) and H = 1 (b): (a) 2
3 〈1, 6〉 �

1
3 〈3, 8〉; (b) 4

9 〈2, 6〉 � 2
9 〈3, 7〉 � 1

3 〈4, 8〉 (scale: (a) 3 : 2; (b) 9 : 4).

coherent configurations are essential building units of multidomain crystals: any DC of such a
crystal exhibiting the symmetry K can be expressed as a weighted composition (8) of coherent
DCs each corresponding to a K-orbit of states. For example, a DC of a PZN-PT crystal
with a symmetry 3m is either trivial—a single domain, or coherent—three states, or else
mixed—1 + 1, 1 + 3, . . . states (cf table 2). Assuming that partial volumes of states need not be
constant over a 4zmm-orbit, one can infer possible symmetries and DCs of the PZN-PT crystals
poled along [001]: 4zmm{4}, mxymxy2z{2} (coherent), mxymxy2z{2 + 2} (mixed), mx,my{2 + 2},
mxy,mxy{1 + 1, 1 + 2, 1 + 1 + 2}, and 1{1 + 1 + 1, 1 + 1 + 1 + 1} (incoherent). In curly braces
following symbols we give the number of the states within every coherent DC involved; the
sign ‘+’ is used as a separator.

We note that for more than eight states the approach outlined above can be rather extensive,
and so we have developed a more efficient algorithm (to appear elsewhere). It is based on the
concepts of the twinning group [16] and stabilizing groups [20] that characterize a domain
state pair: every stabilizing group as well as the twinning group of a relevant pair yields a
principal symmetry and specifies a coherent DC.

6. Driving forces inducing coherent domain configurations in PZN-PT single crystals

While in zero fields the free energy of all possible states is equal, in an applied field these states
may have a distinct free energy. If the field is high enough, it will retain only the state(s) of
the lowest energy while the other ones will be expelled. Denote by H the maximal subgroup
of the prototypic group G which leaves the field(s) invariant. All states present in the DC
produced will often constitute a single H-orbit; in such a case the occupied free energy level
will be called ‘non-degenerate’. However, under certain circumstances the retained states may
form several H-orbits, in which case a ‘degenerate’ free energy level is created: by varying the
intensities of applied fields one can suppress all the H-orbits except one.

Consider a subgroup K of G, containing the group H. Suppose that the set of all states
contained initially in a multidomain crystal is a union of several K-orbits, and that all states
within each K-orbit have equal partial volumes. In other words, assume that the crystal has
an engineered DC whose symmetry is at least K ⊇ H; for K = G the crystal will contain all
possible states with the same partial volume. Two facts should be taken into account: first, any
K-orbit is either an H-orbit or a union of definite H-orbits. Second, any field being invariant
under H must have same effect on all states within an arbitrary H-orbit. After an exposure of
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the crystal to some field(s) invariant under H, one or more H-orbits will be suppressed and the
states within any of the H-orbits left will occupy equal partial volumes. The resulting DC is
coherent if only the lowest free energy level is occupied and is non-degenerate. The engineered
configuration will be mixed or incoherent if all the states occupy either the lowest free energy
level which is degenerate, or more energy levels which may but need not be degenerate. The
symmetry of such a ‘non-coherent’ DC is the intersection

⋂
l∈I StabG(H � il) (cf (9)), where

the orbits H � il , l ∈ I , are all those which survived.
As we will show elsewhere, if no relevant free energy level is degenerate, one of three

possibilities will appear, depending on the intersection of the prototypic group G with the
symmetry group(s) of the applied field(s): the original free energy level to which all possible
domain states belong will

(1) only be shifted—no splitting results; the DCs is not affected;
(2) split into two levels—one can switch between the two corresponding coherent DCs by

changing the sign of a relevant field;
(3) split into three or more levels—for each coherent DC there may exist certain intervals to

which the values of independent components of the applied field(s) should belong in order
that such a DC will be created. In some cases this may be utilized as follows: start with a
coherent DC of certain symmetry K, H ⊂ K ⊂ G, and using a suitable field, split this DC
into two coherent ones of the symmetry H as described in (2).

For each coherent DC of the PZN-PT crystals we have derived the field(s) that will induce
it. (Detailed information on the method used will be given elsewhere.) The results are presented
in table 2: a coherent DC listed in the second column can be produced from the coherent DC
given in the third column by means of the field(s) that follow(s). If two fields are indicated,
both of them should be applied.

For incoherent DCs the situation is not so simple, as the fourth column of table 3 shows:
after the underlined symbol of the principal symmetry, 2xy/mxy or 2xy, we give the field(s)
that can produce a minimal incoherent DC with same symmetry listed in the third column.
An initial DC, to which the field(s) should be applied, appears in a row below together with
the condition(s) that such field(s) must fulfil. We stress that for any minimal incoherent DC
of the symmetry 2xy, three initial DCs exist—incoherent, mixed and coherent; the respective
symmetries are 2xy/mxy, mxy2xymz and m3m. The results for a DC w1ϑ

(r)
1 �w2%

(xy)

1 are given.
We comment on the subcases (1a) and (2a) for which the information presented is only partial:
a free energy level, to which all states constituting a coherent DC, say λ1, belong, is referred to
as a λ1-level. The conditions (1a) apply if the splitting of µ(z)

1 -level into ϑ
(r)
1 - and ϑ

(z)
1 -levels

under a mechanical stress, T23 = T31 �= T12 = R, is more than twice but not more than four
times the splitting of the basic κ-level into µ(z)

1 - and µ(z)
2 -levels due to the stress T12 = R. The

conditions (2a) are valid if the same relation as for the splitting of the µ(z)
1 -level into the ϑ(r)

1 -
and ϑ(z)

1 -levels holds for the splitting of µ(z)
2 -level into %(xy)1 - and %(xy)2 -levels under an electric

field E1 = −E2. In the other cases the ϑ(r)
1 - and %(xy)1 -level degenerate into a single level.

We remark that the concept of a coherent DC is analogous to that of a single-domain state:
to each non-trivial coherent DC there exists an equivalent one with the same free energy; these
two DCs are related by an operation of the prototypic group G.
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